
GuessIt Documentation
Release 0.8

Nicolas Wack

January 19, 2015

Contents

1 Features 3

2 User Guide 5
2.1 Installation . 5
2.2 Command-line usage . 6
2.3 Python module usage . 7

3 Web Service API 9

4 Developer Guide 11
4.1 Understanding the MatchTree . 11
4.2 What does the IterativeMatcher do? . 11
4.3 Merging all the results in a MatchTree to give a final Guess . 13
4.4 Guess . 13
4.5 MatchTree . 15
4.6 Matchers . 17

5 Support 19

6 Contribute 21

7 License 23

Python Module Index 25

i

ii

GuessIt Documentation, Release 0.8

Release v0.8 (Installation)

GuessIt is a python library that tries to extract as much information as possible from a video file.

It has a powerful filename matcher that allows to guess a lot of metadata from a video using only its filename. This
matcher works with both movies and tv shows episodes.

For example, GuessIt can do the following:

$ guessit "Treme.1x03.Right.Place,.Wrong.Time.HDTV.XviD-NoTV.avi"
For: Treme.1x03.Right.Place,.Wrong.Time.HDTV.XviD-NoTV.avi
GuessIt found: {

[1.00] "mimetype": "video/x-msvideo",
[0.80] "episodeNumber": 3,
[0.80] "videoCodec": "XviD",
[1.00] "container": "avi",
[1.00] "format": "HDTV",
[0.70] "series": "Treme",
[0.50] "title": "Right Place, Wrong Time",
[0.80] "releaseGroup": "NoTV",
[0.80] "season": 1,
[1.00] "type": "episode"

}

Contents 1

GuessIt Documentation, Release 0.8

2 Contents

CHAPTER 1

Features

At the moment, the filename matcher is able to recognize the following property types:

[title, # for movies and episodes
series, season, # for episodes only
episodeNumber, episodeDetails, # for episodes only
date, year, # ’date’ instance of datetime.date
language, subtitleLanguage, # instances of babelfish.Language
country, # instances of babelfish.Country
fileSize, duration, # when detecting video file metadata
container, format,
videoCodec, audioCodec,
videoProfile, audioProfile,
audioChannels, screenSize,
releaseGroup, website,
cdNumber, cdNumberTotal,
filmNumber, filmSeries,
bonusNumber, edition,
idNumber, # tries to identify a hash or a serial number
other
]

Guessit also allows you to compute a whole lof of hashes from a file, namely all the ones you can find in the hashlib
python module (md5, sha1, ...), but also the Media Player Classic hash that is used (amongst others) by OpenSubtitles
and SMPlayer, as well as the ed2k hash.

If you have the ‘guess-language’ python package installed, GuessIt can also analyze a subtitle file’s contents and detect
which language it is written in.

If you have the ‘enzyme’ python package installed, GuessIt can also detect the properties from the actual video file
metadata.

3

GuessIt Documentation, Release 0.8

4 Chapter 1. Features

CHAPTER 2

User Guide

This part of the documentation, which is mostly prose, shows how to use Guessit both from the command-line and as
a python module which you can use in your own projects.

2.1 Installation

This part of the documentation covers the installation of GuessIt. The first step to using any software package is getting
it properly installed.

2.1.1 Distribute & Pip

Installing GuessIt is simple with pip:

$ pip install guessit

or, with easy_install:

$ easy_install guessit

But, you really shouldn’t do that.

2.1.2 Get the Code

GuessIt is actively developed on GitHub, where the code is always available.

You can either clone the public repository:

git clone git://github.com/wackou/guessit.git

Download the tarball:

$ curl -L https://github.com/wackou/guessit/tarball/master -o guessit.tar.gz

Or, download the zipball:

$ curl -L https://github.com/wackou/guessit/zipball/master -o guessit.zip

Once you have a copy of the source, you can embed it in your Python package, or install it into your site-packages
easily:

5

http://www.pip-installer.org/
http://pypi.python.org/pypi/setuptools
http://www.pip-installer.org/en/latest/other-tools.html#pip-compared-to-easy-install
https://github.com/wackou/guessit
https://github.com/wackou/guessit/tarball/master
https://github.com/wackou/guessit/zipball/master

GuessIt Documentation, Release 0.8

$ python setup.py install

2.2 Command-line usage

To have GuessIt try to guess some information from a filename, just run it as a command:

$ guessit "Movies/Dark City (1998)/Dark.City.(1998).DC.BDRip.720p.DTS.X264-CHD.mkv"
For: Movies/Dark City (1998)/Dark.City.(1998).DC.BDRip.720p.DTS.X264-CHD.mkv
GuessIt found: {

[1.00] "videoCodec": "h264",
[1.00] "container": "mkv",
[1.00] "format": "BluRay",
[0.60] "title": "Dark City",
[1.00] "releaseGroup": "CHD",
[1.00] "screenSize": "720p",
[1.00] "year": 1998,
[1.00] "type": "movie",
[1.00] "audioCodec": "DTS"

}

The numbers between square brackets indicate the confidence in the value, so for instance in the previous example,
GuessIt is sure that the videoCodec is h264, but only 60% confident that the title is ‘Dark City’.

You can use the -v or --verbose flag to have it display debug information.

You can use the -p or -l flags to display the properties names or the multiple values they can take.

You can also run a --demo mode which will run a few tests and display the results.

By default, GuessIt will try to autodetect the type of file you are asking it to guess, movie or episode. If you want to
force one of those, use the -t movie or -t episode flags.

If input file is remote file or a release name with no folder and extension, you should use the -n or --name-only
flag. It will disable folder and extension parsing, and any concrete file related analysis.

Guessit also allows you to specify the type of information you want using the -i or --info flag:

$ guessit -i hash_md5,hash_sha1,hash_ed2k tests/dummy.srt
For: tests/dummy.srt
GuessIt found: {

[1.00] "hash_ed2k": "ed2k://|file|dummy.srt|44|1CA0B9DED3473B926AA93A0A546138BB|/",
[1.00] "hash_md5": "e781de9b94ba2753a8e2945b2c0a123d",
[1.00] "hash_sha1": "bfd18e2f4e5d59775c2bc14d80f56971891ed620"

}

You can see the list of options that guessit.py accepts like that:

$ guessit -h
Usage: guessit.py [options] file1 [file2...]

Options:
-h, --help show this help message and exit
-v, --verbose Display debug output
-p, --properties Display properties that can be guessed.
-l, --values Display property values that can be guessed.
-s, --transformers Display transformers that can be used.
-i INFO, --info=INFO The desired information type: filename, video,

hash_mpc or a hash from python’s hashlib module, such

6 Chapter 2. User Guide

GuessIt Documentation, Release 0.8

as hash_md5, hash_sha1, ...; or a list of any of them,
comma-separated

-n, --name-only Parse files as name only. Disable folder parsing,
extension parsing, and file content analysis.

-t TYPE, --type=TYPE The suggested file type: movie, episode. If undefined,
type will be guessed.

-a, --advanced Display advanced information for filename guesses, as
json output

-y, --yaml Display information for filename guesses as yaml
output (like unit-test)

-d, --demo Run a few builtin tests instead of analyzing a file
-b, --bug Submit a wrong detection to the guessit.io service

2.3 Python module usage

The main entry points to the python module are the guess_file_info, guess_movie_info and
guess_episode_info.

The guess_file_info function will try to autodetect the type of the file, either movie, moviesubtitle, movieinfo,
episode, episodesubtitle or episodeinfo.

Pass them the filename and the desired information type:

>>> import guessit
>>> path = ’Movies/Dark City (1998)/Dark.City.(1998).DC.BDRip.720p.DTS.X264-CHD.mkv’
>>> guess = guessit.guess_movie_info(path, info=[’filename’])

>>> print type(guess)
<class ’guessit.guess.Guess’>

>>> print guess
{’videoCodec’: ’h264’, ’container’: ’mkv’, ’format’: ’BluRay’,
’title’: ’Dark City’, ’releaseGroup’: ’CHD’, ’screenSize’: ’720p’,
’year’: 1998, ’type’: ’movie’, ’audioCodec’: ’DTS’}

>>> print guess.nice_string()
{

[1.00] "videoCodec": "h264",
[1.00] "container": "mkv",
[1.00] "format": "BluRay",
[0.60] "title": "Dark City",
[1.00] "releaseGroup": "CHD",
[1.00] "screenSize": "720p",
[1.00] "year": 1998,
[1.00] "type": "movie",
[1.00] "audioCodec": "DTS"

}

A Guess instance is a dictionary which has an associated confidence for each of the properties it has.

A Guess instance is also a python dict instance, so you can use it wherever you would use a normal python dict.

If you have the Enzyme python package installed, then the guess_video_metadata function is also available,
which will return a guess with the properties from the video file metadata.

2.3. Python module usage 7

GuessIt Documentation, Release 0.8

8 Chapter 2. User Guide

CHAPTER 3

Web Service API

The guessit.io server also provides a free webservice that allows you to perform filename detection, even you don’t
have python installed (eg: you need to use it from an Android app, or NodeJS, etc.).

You can look at the documentation for the web API here: http://api.guessit.io

9

http://api.guessit.io

GuessIt Documentation, Release 0.8

10 Chapter 3. Web Service API

CHAPTER 4

Developer Guide

If you want to contribute to the project, this part of the documentation is for you.

4.1 Understanding the MatchTree

The basic structure that the filename detection component uses is the MatchTree. A MatchTree is a tree covering
the filename, where each node represent a substring in the filename and can have a Guess associated with it that
contains the information that has been guessed in this node. Nodes can be further split into subnodes until a proper
split has been found.

This makes it so that all the leaves concatenated will give you back the original filename. But enough theory, let’s look
at an example:

>>> path = ’Movies/Dark City (1998)/Dark.City.(1998).DC.BDRip.720p.DTS.X264-CHD.mkv’
>>> print guessit.IterativeMatcher(path).match_tree
000000 1111111111111111 222 333
000000 0000000000111111 0000000000111111222222222222222222222222222 000

011112 011112000000000000000000000000111
000000000000000000011112
0000000000111122222
0000111112 01112

Movies/__________(____)/Dark.City.(____).DC._____.____.___.____-___.___
tttttttttt yyyy yyyy fffff ssss aaa vvvv rrr ccc

Movies/Dark City (1998)/Dark.City.(1998).DC.BDRip.720p.DTS.X264-CHD.mkv

The last line contains the filename, which you can use a reference. The previous line contains the type of property that
has been found. The line before that contains the filename, where all the found groups have been blanked. Basically,
what is left on this line are the leftover groups which could not be identified.

The lines before that indicate the indices of the groups in the tree.

For instance, the part of the filename ‘BDRip’ is the leaf with index (2, 2, 0, 0, 0, 1) (read from top to
bottom), and its meaning is ‘format’ (as shown by the f‘s on the last-but-one line).

4.2 What does the IterativeMatcher do?

The goal of the api/matcher is to take a MatchTree which contains no information (yet!) at the beginning, and apply
a succession of rules to try to guess parts of the filename. These rules are called transformations and work in-place on
the tree, splitting into new leaves and updating the nodes’s guesses when it finds some information.

Let’s look at what happens when matching the previous filename.

11

GuessIt Documentation, Release 0.8

4.2.1 Splitting into path components

First, we split the filename into folders + basename + extension This gives us the following tree, which has 4 leaves
(from 0 to 3):

000000 1111111111111111 222 333
Movies/Dark City (1998)/Dark.City.(1998).DC.BDRip.720p.DTS.X264-CHD.mkv

4.2.2 Splitting into explicit groups

Then, we want to split each of those groups into “explicit” groups, i.e.: groups which are enclosed in parentheses,
square brackets, curly braces, etc.:

000000 1111111111111111 222 333
000000 0000000000111111 0000000000111111222222222222222222222222222 000
Movies/Dark City (1998)/Dark.City.(1998).DC.BDRip.720p.DTS.X264-CHD.___

ccc
Movies/Dark City (1998)/Dark.City.(1998).DC.BDRip.720p.DTS.X264-CHD.mkv

As you can see, the containing folder has been split into 2 sub-groups, and the basename into 3 groups (separated by
the year information).

Note that we also got the information from the extension, as you can see above.

4.2.3 Finding interesting patterns

Now that this first split has been made, we can start finding some known patterns which we can identify in the filename.
That is the main objective of the IterativeMatcher, which will run a series of transformations which can identify
groups in the filename and will annotate the corresponding nodes.

For instance, the year:

000000 1111111111111111 222 333
000000 0000000000111111 0000000000111111222222222222222222222222222 000

011112 011112
Movies/Dark City (____)/Dark.City.(____).DC.BDRip.720p.DTS.X264-CHD.___

yyyy yyyy ccc
Movies/Dark City (1998)/Dark.City.(1998).DC.BDRip.720p.DTS.X264-CHD.mkv

Then, known properties usually found in video filenames:

000000 1111111111111111 222 333
000000 0000000000111111 0000000000111111222222222222222222222222222 000

011112 011112000000000000000000000000111
000000000000000000011112
0000000000111122222
0000111112 01112

Movies/Dark City (____)/Dark.City.(____).DC._____.____.___.____-___.___
yyyy yyyy fffff ssss aaa vvvv rrr ccc

Movies/Dark City (1998)/Dark.City.(1998).DC.BDRip.720p.DTS.X264-CHD.mkv

As you can see, this starts to branch pretty quickly, as each found group splits a leaf into further leaves. In this case,
that gives us the year (1998), the format (BDRip), the screen size (720p), the video codec (x264) and the release group
(CHD).

12 Chapter 4. Developer Guide

GuessIt Documentation, Release 0.8

4.2.4 Using positional rules to find the ‘title’ property

Now that we found all the known patterns that we could, it is time to try to guess what is the title of the movie. This
is done by looking at which groups in the filename are still unidentified, and trying to guess which one corresponds to
the title by looking at their position:

000000 1111111111111111 222 333
000000 0000000000111111 0000000000111111222222222222222222222222222 000

011112 011112000000000000000000000000111
000000000000000000011112
0000000000111122222
0000111112 01112

Movies/__________(____)/Dark.City.(____).DC._____.____.___.____-___.___
tttttttttt yyyy yyyy fffff ssss aaa vvvv rrr ccc

Movies/Dark City (1998)/Dark.City.(1998).DC.BDRip.720p.DTS.X264-CHD.mkv

In this case, as the containing folder is composed of 2 groups, the second of which is the year, we can (usually) safely
assume that the first one corresponds to the movie title.

4.3 Merging all the results in a MatchTree to give a final Guess

Once that we have matched as many groups as we could, the job is not done yet. Indeed, every leaf of the tree that
we could identify contains the found property in its guess, but what we want at the end is to have a single Guess
containing all the information.

There are some simple strategies implemented to try to deal with conflicts and/or duplicate properties. In our example,
‘year’ appears twice, but as it has the same value, so it will be merged into a single ‘year’ property, but with a
confidence that represents the combined confidence of both guesses. If the properties were conflicting, we would take
the one with the highest confidence and lower it accordingly.

Here:

>>> path = ’Movies/Dark City (1998)/Dark.City.(1998).DC.BDRip.720p.DTS.X264-CHD.mkv’
>>> print guessit.guess_movie_info(path)
{’videoCodec’: ’h264’, ’container’: ’mkv’, ’format’: ’BluRay’,
’title’: ’Dark City’, ’releaseGroup’: ’CHD’, ’screenSize’: ’720p’,
’year’: 1998, ’type’: ’movie’, ’audioCodec’: ’DTS’}

And that gives you your final guess!

You may also want to familiarize yourself with the following classes:

4.4 Guess

class guessit.guess.Guess(*args, **kwargs)
A Guess is a dictionary which has an associated confidence for each of its values.

As it is a subclass of dict, you can use it everywhere you expect a simple dict.

metadata(prop=None)
Return the metadata associated with the given property name

If no property name is given, get the global_metadata

4.3. Merging all the results in a MatchTree to give a final Guess 13

GuessIt Documentation, Release 0.8

nice_string(advanced=False)
Return a string with the property names and their values, that also displays the associated confidence to
each property.

FIXME: doc with param

to_dict(advanced=False)
Return the guess as a dict containing only base types, ie: where dates, languages, countries, etc. are
converted to strings.

if advanced is True, return the data as a json string containing also the raw information of the properties.

update_highest_confidence(other)
Update this guess with the values from the given one. In case there is property present in both, only the
one with the highest one is kept.

guessit.guess.choose_int(g1, g2)
Function used by merge_similar_guesses to choose between 2 possible properties when they are integers.

guessit.guess.choose_string(g1, g2)
Function used by merge_similar_guesses to choose between 2 possible properties when they are strings.

If the 2 strings are similar, or one is contained in the other, the latter is returned with an increased confidence.

If the 2 strings are dissimilar, the one with the higher confidence is returned, with a weaker confidence.

Note that here, ‘similar’ means that 2 strings are either equal, or that they differ very little, such as one string
being the other one with the ‘the’ word prepended to it.

>>> s(choose_string((’Hello’, 0.75), (’World’, 0.5)))
(’Hello’, 0.25)

>>> s(choose_string((’Hello’, 0.5), (’hello’, 0.5)))
(’Hello’, 0.75)

>>> s(choose_string((’Hello’, 0.4), (’Hello World’, 0.4)))
(’Hello’, 0.64)

>>> s(choose_string((’simpsons’, 0.5), (’The Simpsons’, 0.5)))
(’The Simpsons’, 0.75)

guessit.guess.merge_similar_guesses(guesses, prop, choose)
Take a list of guesses and merge those which have the same properties, increasing or decreasing the confidence
depending on whether their values are similar.

guessit.guess.merge_all(guesses, append=None)
Merge all the guesses in a single result, remove very unlikely values, and return it. You can specify a list of
properties that should be appended into a list instead of being merged.

>>> s(merge_all([Guess({’season’: 2}, confidence=0.6),
... Guess({’episodeNumber’: 13}, confidence=0.8)])
...) == {’season’: 2, ’episodeNumber’: 13}
True

>>> s(merge_all([Guess({’episodeNumber’: 27}, confidence=0.02),
... Guess({’season’: 1}, confidence=0.2)])
...) == {’season’: 1}
True

>>> s(merge_all([Guess({’other’: ’PROPER’}, confidence=0.8),
... Guess({’releaseGroup’: ’2HD’}, confidence=0.8)],
... append=[’other’])

14 Chapter 4. Developer Guide

GuessIt Documentation, Release 0.8

...) == {’releaseGroup’: ’2HD’, ’other’: [’PROPER’]}
True

4.5 MatchTree

class guessit.matchtree.BaseMatchTree(string=u’‘, span=None, parent=None)
A BaseMatchTree is a tree covering the filename, where each node represents a substring in the filename and
can have a Guess associated with it that contains the information that has been guessed in this node. Nodes
can be further split into subnodes until a proper split has been found.

Each node has the following attributes:

• string = the original string of which this node represents a region

• span = a pair of (begin, end) indices delimiting the substring

• parent = parent node

• children = list of children nodes

• guess = Guess()

BaseMatchTrees are displayed in the following way:

>>> path = ’Movies/Dark City (1998)/Dark.City.(1998).DC.BDRip.720p.DTS.X264-CHD.mkv’
>>> print(guessit.IterativeMatcher(path).match_tree)
000000 1111111111111111 222 333
000000 0000000000111111 0000000000111111222222222222222222222222222 000

011112 011112000011111222222222222222222 000
011112222222222222

0000011112222
01112 0111

Movies/__________(____)/Dark.City.(____).DC._____.____.___.____-___.___
tttttttttt yyyy yyyy fffff ssss aaa vvvv rrr ccc

Movies/Dark City (1998)/Dark.City.(1998).DC.BDRip.720p.DTS.X264-CHD.mkv

The last line contains the filename, which you can use a reference. The previous line contains the type of
property that has been found. The line before that contains the filename, where all the found groups have been
blanked. Basically, what is left on this line are the leftover groups which could not be identified.

The lines before that indicate the indices of the groups in the tree.

For instance, the part of the filename ‘BDRip’ is the leaf with index (2, 2, 1) (read from top to bottom),
and its meaning is ‘format’ (as shown by the f‘s on the last-but-one line).

add_child(span)
Add a new child node to this node with the given span.

clean_value
Return a cleaned value of the matched substring, with better presentation formatting (punctuation marks
removed, duplicate spaces, ...)

depth
Return the depth of this node.

get_partition_spans(indices)
Return the list of absolute spans for the regions of the original string defined by splitting this node at the
given indices (relative to this node)

4.5. MatchTree 15

GuessIt Documentation, Release 0.8

info
Return a dict containing all the info guessed by this node, subnodes included.

is_leaf()
Return whether this node is a leaf or not.

leaves()
Return a generator over all the nodes that are leaves.

next_leaf(leaf)
Return next leaf for this node

next_leaves(leaf)
Return next leaves for this node

node_at(idx)
Return the node at the given index in the subtree rooted at this node.

node_idx
Return this node’s index in the tree, as a tuple. If this node is the root of the tree, then return ().

nodes()
Return all the nodes and subnodes in this tree.

nodes_at_depth(depth)
Return all the nodes at a given depth in the tree

partition(indices)
Partition this node by splitting it at the given indices, relative to this node.

previous_leaf(leaf)
Return previous leaf for this node

previous_leaves(leaf)
Return previous leaves for this node

root
Return the root node of the tree.

to_string()
Return a readable string representation of this tree.

The result is a multi-line string, where the lines are:

• line 1 -> N-2: each line contains the nodes at the given depth in the tree

• line N-2: original string where all the found groups have been blanked

• line N-1: type of property that has been found

• line N: the original string, which you can use a reference.

value
Return the substring that this node matches.

class guessit.matchtree.MatchTree(string=u’‘, span=None, parent=None)
The MatchTree contains a few “utility” methods which are not necessary for the BaseMatchTree, but add a lot
of convenience for writing higher-level rules.

first_leaf_containing(property_name)
Return the first leaf containing the given property.

is_explicit()
Return whether the group was explicitly enclosed by parentheses/square brackets/etc.

16 Chapter 4. Developer Guide

GuessIt Documentation, Release 0.8

leaves_containing(property_name)
Return a generator of leaves that guessed the given property.

matched()
Return a single guess that contains all the info found in the nodes of this tree, trying to merge properties as
good as possible.

previous_leaves_containing(node, property_name)
Return a generator of leaves containing the given property that are before the given node (in the string).

previous_unidentified_leaves(node)
Return a generator of non-empty leaves that are before the given node (in the string).

unidentified_leaves(valid=<function <lambda> at 0x7f52f6e9d578>)
Return a generator of leaves that are not empty.

4.6 Matchers

class guessit.matcher.IterativeMatcher(filename, options=None, **kwargs)
An iterative matcher tries to match different patterns that appear in the filename.

The filetype argument indicates which type of file you want to match. If it is undefined, the matcher will
try to see whether it can guess that the file corresponds to an episode, or otherwise will assume it is a movie.

The recognized filetype values are: [’subtitle’, ’info’, ’movie’, ’moviesubtitle’,
’movieinfo’, ’episode’, ’episodesubtitle’, ’episodeinfo’]

options is a dict of options values to be passed to the transformations used by the matcher.

The IterativeMatcher works mainly in 2 steps:

First, it splits the filename into a match_tree, which is a tree of groups which have a semantic meaning, such as
episode number, movie title, etc...

The match_tree created looks like the following:

00 111
0000011111111111112222222222222233333333444444444444444455555555666777777778888888 000
0000000000000000000000000000000001111112011112222333333401123334000011233340000000 000
__________________(The.Prestige).______.[____.HP.______.{__-___}.St{__-___}.Chaps].___
xxxxxttttttttttttt ffffff vvvv xxxxxx ll lll xx xxx ccc
[XCT].Le.Prestige.(The.Prestige).DVDRip.[x264.HP.He-Aac.{Fr-Eng}.St{Fr-Eng}.Chaps].mkv

The first 3 lines indicates the group index in which a char in the filename is located. So for instance, x264 (in
the middle) is the group (0, 4, 1), and it corresponds to a video codec, denoted by the letter v in the 4th line. (for
more info, see guess.matchtree.to_string)

Second, it tries to merge all this information into a single object containing all the found properties, and does
some (basic) conflict resolution when they arise.

4.6. Matchers 17

GuessIt Documentation, Release 0.8

18 Chapter 4. Developer Guide

CHAPTER 5

Support

The project website for GuessIt is hosted at ReadTheDocs. There you will also find the User guide and Developer
documentation.

This project is hosted on GitHub: https://github.com/wackou/guessit

Please report issues and/or feature requests via the bug tracker.

You can also report issues using the command-line tool:

$ guessit --bug "filename.that.fails.avi"

19

http://guessit.readthedocs.org/
https://github.com/wackou/guessit
https://github.com/wackou/guessit/issues

GuessIt Documentation, Release 0.8

20 Chapter 5. Support

CHAPTER 6

Contribute

GuessIt is under active development, and contributions are more than welcome!

1. Check for open issues or open a fresh issue to start a discussion around a feature idea or a bug. There is a
Contributor Friendly tag for issues that should be ideal for people who are not very familiar with the codebase
yet.

2. Fork the repository on Github to start making your changes to the master branch (or branch off of it).

3. Write a test which shows that the bug was fixed or that the feature works as expected.

4. Send a pull request and bug the maintainer until it gets merged and published. :)

21

https://github.com/wackou/guessit

GuessIt Documentation, Release 0.8

22 Chapter 6. Contribute

CHAPTER 7

License

GuessIt is licensed under the LGPLV3 license.

23

http://www.gnu.org/licenses/lgpl.html

GuessIt Documentation, Release 0.8

24 Chapter 7. License

Python Module Index

g
guessit.guess, 13
guessit.matcher, 17
guessit.matchtree, 15

25

GuessIt Documentation, Release 0.8

26 Python Module Index

Index

A
add_child() (guessit.matchtree.BaseMatchTree method),

15

B
BaseMatchTree (class in guessit.matchtree), 15

C
choose_int() (in module guessit.guess), 14
choose_string() (in module guessit.guess), 14
clean_value (guessit.matchtree.BaseMatchTree attribute),

15

D
depth (guessit.matchtree.BaseMatchTree attribute), 15

F
first_leaf_containing() (guessit.matchtree.MatchTree

method), 16

G
get_partition_spans() (guessit.matchtree.BaseMatchTree

method), 15
Guess (class in guessit.guess), 13
guessit.guess (module), 13
guessit.matcher (module), 17
guessit.matchtree (module), 15

I
info (guessit.matchtree.BaseMatchTree attribute), 15
is_explicit() (guessit.matchtree.MatchTree method), 16
is_leaf() (guessit.matchtree.BaseMatchTree method), 16
IterativeMatcher (class in guessit.matcher), 17

L
leaves() (guessit.matchtree.BaseMatchTree method), 16
leaves_containing() (guessit.matchtree.MatchTree

method), 16

M
matched() (guessit.matchtree.MatchTree method), 17
MatchTree (class in guessit.matchtree), 16
merge_all() (in module guessit.guess), 14
merge_similar_guesses() (in module guessit.guess), 14
metadata() (guessit.guess.Guess method), 13

N
next_leaf() (guessit.matchtree.BaseMatchTree method),

16
next_leaves() (guessit.matchtree.BaseMatchTree

method), 16
nice_string() (guessit.guess.Guess method), 13
node_at() (guessit.matchtree.BaseMatchTree method), 16
node_idx (guessit.matchtree.BaseMatchTree attribute),

16
nodes() (guessit.matchtree.BaseMatchTree method), 16
nodes_at_depth() (guessit.matchtree.BaseMatchTree

method), 16

P
partition() (guessit.matchtree.BaseMatchTree method),

16
previous_leaf() (guessit.matchtree.BaseMatchTree

method), 16
previous_leaves() (guessit.matchtree.BaseMatchTree

method), 16
previous_leaves_containing() (gues-

sit.matchtree.MatchTree method), 17
previous_unidentified_leaves() (gues-

sit.matchtree.MatchTree method), 17

R
root (guessit.matchtree.BaseMatchTree attribute), 16

T
to_dict() (guessit.guess.Guess method), 14
to_string() (guessit.matchtree.BaseMatchTree method),

16

27

GuessIt Documentation, Release 0.8

U
unidentified_leaves() (guessit.matchtree.MatchTree

method), 17
update_highest_confidence() (guessit.guess.Guess

method), 14

V
value (guessit.matchtree.BaseMatchTree attribute), 16

28 Index

	Features
	User Guide
	Installation
	Command-line usage
	Python module usage

	Web Service API
	Developer Guide
	Understanding the MatchTree
	What does the IterativeMatcher do?
	Merging all the results in a MatchTree to give a final Guess
	Guess
	MatchTree
	Matchers

	Support
	Contribute
	License
	Python Module Index

